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SUMMARY

Segmentation of solid propellant rocket motors has been demonstrated to be a source of unpredicted and
undesirable pressure and thrust oscillations. Surface discontinuities are the primary cause of these vortex-shedding-
driven oscillations, which result from a strong coupling between the shear layer instability and the acoustic motion
in the chamber. The analysis of an axisymmetric geometry corresponding to a 1

15
subscale P230 motor of the Ariane

5 rocket is numerically computed. With a suitable mesh for the viscosity value studied, the aeroacoustics in the
chamber is fully described. A coupling between the hydrodynamic instability and the organ-pipe acoustic mode is
clearly demonstrated. The mechanism for frequency selection is discussed. # 1997 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Combustion stability assessment of solid propellant rocket motors used as space boosters is a very

interesting research problem. Indeed, segmented solid propellant rocket motors have been reported to

exhibit pressure and thrust oscillations, although they were predicted to be stable by classical stability

methods. One mechanism that drives pressure oscillations in rocket motors is vortex shedding,1,2

which can interact with the chamber acoustics to generate pressure oscillations.3 Owing to the

segmented design of solid propellant rocket motors, shear layers induced by surface discontinuities

appear and produce vortex shedding. The dipole mechanism involving the interaction of the vortices

with an impingement surface is a way for energy to be transferred from the vortex ¯uctuations to the

acoustic ®eld. A strong coupling between the instability of shear ¯ow and the organ-pipe acoustic

mode in the chamber modi®es the original instability and produces a periodic vortex shedding. The

feedback from the acoustic wave provides the control signal for the hydrodynamic instability.

A numerical method well adapted to the description of aeroacoustic interactions inside the

combustion chamber of solid propellant rocket motors has been developed by the author and fully
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tested in two previous papers.4,5 In the last paper,5 various numerical schemes were tested on three

different ¯ow con®gurations, including the one computed here. The aim of the present paper is to

provide a detailed and re®ned analysis of these interactions in the particular case of the Ariane 5 P230

solid rocket booster and also to evaluate the capacity of this numerical method to handle the

aeroacoustic interactions in realistic and complex con®gurations. The computational domain

corresponds to 1
15

axisymmetric subscale motors for which experimental results exist.6±8 An

experimental investigation,6 done with various arrangements of inter-segment restrictors, has brought

to light the presence of naturally unstable axial modes from the ®rst to the sixth longitudinal mode.

Among the four con®gurations investigated in this experiment, case A corresponds to the Ariane 5

P230 motor. The computation, done with a suitable mesh corresponding to the selected value of

viscosity,4 shows the organization of the ¯ow and the properties of the vortex shedding. Coupling

between the instability of the mean ¯ow shear layers and the acoustic motion and resonant

interactions are pointed out.

The numerical methodology is presented in Section 2 and the computational results are detailed in

Section 3.

2. METHODOLOGY

2.1. Governing equations

The physical model used is the unsteady Navier±Stokes equations without turbulence. It describes

the conservation of mass, momentum and total energy. These equations can be written in vector form

for the axisymmetric con®guration as
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To close this set of equations, the pressure is related to the other state variables r and T by the law of

state for perfect gases. Here �U ;V � is the velocity ®eld, r; T ;P and E are the density, temperature,

pressure and total energy respectively and m and l are the viscosity and thermal diffusivity

respectively.

2.2. Numerical method

The numerical method used is a ®nite volume version of the explicit MacCormack scheme.5,9,10 It

consists of a predictor±corrector approach. For each time step, forward or backward approximations

are used for the inviscid part and central differences for the viscous terms. The two steps of the

scheme can be written as follows: for the predictor step,
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Here Fn � F�W n�, where F can be F;G or H.

The predictor step yields intermediate values for the variables at each mesh point, using one-sided

differences to approximate the ®rst derivatives. The corrector step corrects the former approximation

with opposite one-sided differences for the ®rst derivatives. At each mesh point �i; j� the applied

MacCormack scheme is then given by: for the predictor step,
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Here D� and Dÿ denote right-sided and left-sided differences respectively.

In order to restore the second-order accuracy, a cycle is set up on four iterations by reversing the

backward and forward operators between the two steps and alternating them between the longitudinal

and axial directions.

The scheme is second-order-accurate in time and space. In the present numerical code it is also

possible to use an implicit method based on a Gauss±Seidel line relaxation technique or a ¯ux-

splitting technique, but in order to compute an unsteady ¯ow, it has been shown that computation

without these options is more accurate and practical, because both these techniques induce damping

effects.5
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2.3. Computational domain

The test case computed is based on a segmented motor model. This case is axisymmetric and

requires a multiblock technique. It represents con®guration A of the ONERA LP3 experiment. The

chosen sequence corresponds to 20 mm of burning propellant, for which an important instability at

the third mode (900 Hz) was observed.6±8 The meshes are designed by ONERA.8 Three mesh levels

have been tested for this study. The medium one is obtained from the ®ne one by removing every

second point in both directions and the coarse one is obtained from the medium one in the same way.

The geometry and the mesh are presented in Figure 1. The con®guration is divided into ®ve blocks. In

a previous study4 the results for different viscosity values (laminar viscosity �mlam�; 80mlam and

400mlam� have shown a mesh dependency. At 80mlam it is necessary to use the ®ner mesh (Table I) to

obtain a good prediction. As will be seen later, this grid size is suitable for resolving the boundary

layer at the second diaphragm where the origin of instability is located. Vuillot et al.,8 have

encountered a cell Reynolds number limitation at the second diaphragm (no-slip wall). Hence they

de®ne a viscosity limit. For the ®ne grid the observed limitation is m > 50mlam. Also, in the range

50mlam 4m < 200mlam the solutions obtained with the ®ne mesh are approximately the same. Thus, in

view of these results and in order to verify the limit observed by Vuillot et al.8 necessary to capture

the boundary layer that develops along the second diaphragm (minimum of six grid points), we chose

the viscosity of 80mlam to perform computations on the ®ne mesh.

2.4. Boundary and initial conditions

The boundary conditions imposed are given in Table II. No-slip conditions are imposed on inert

walls where the velocity and normal pressure gradient are equal to zero. On injecting walls the mass

¯ow rate, the temperature and zero tangential velocity are speci®ed. For supersonic out¯ow, classical

®rst-order extrapolations are used.

For initial conditions, computations are started from rest.

2.5. Physical values

The physical values used are given in Table III, where rp is the propellant density, Vc is the

propellant burning rate, _m is the injection mass ¯ow rate �rv�inj; Tf is the ¯ame temperature, a is the

Figure 1. Computational domain
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speed of sound. R is the perfect gas constant, mlam is the dynamic viscosity, g is the ratio of speci®c

heats and Pr is the Prandtl number.

3. COMPUTATIONAL RESULTS

The velocity pro®le at the second diaphragm is plotted in Figure 2. Ten computation points are

present in the boundary layer. In this case a small recirculating zone characterized by negative

velocities is detected. This separation is not detected when coarser meshes or higher viscosity values

are used, but it can be helpful to explain the nature of the interaction between the ¯ow and the

acoustic wave. Figure 3 shows the iso-vorticity at various times. The formation of the vortex can be

seen and a pairing mechanism takes place. The new vortex resulting from the pairing mechanism is

absorbed by the nozzle. Various vortices of different sizes exist in the ¯ow and complex non-linear

Table I. Mesh size

Block 1 2 3 4 5

Mesh 821637 61637 217621 37637 529621

Table II. Boundary conditions

Head end Aft end Internal side External sidea

No slip Supersonic out¯ow Symmetry A2, A4: injecting wall
A1, A3, A5: no slip

a A1, A2, A3, A4 and A5 are de®ned in Figure 1.

Table III. Physical values (SI units)

rp Vc _m Tf a R mlam g Pr

1640 7�3861073 12�1032 2700 1061�27 340�53 8�161075 1�225 1

Figure 2. Velocity pro®le at second diaphragm
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interactions can appear. The signals obtained are not monochromatic and contain complex

phenomena. Figure 4 presents the time evolution of the thrust and shows that even though an

organized frequency seems to be apparent, the signal is quite complex, involving various frequency

interactions. In Table IV are given the mean values and amplitudes of the exit mass ¯ow rate � _me�, the

thrust (Th), the head-end pressure �Phe�, the aft-end pressure �Pa
e�, the pressure at the ®rst diaphragm

�PI1� and the pressure at the second diaphragm �PI2�. The amplitudes of the pressure oscillations

are higher in the rear part of the chamber, between the second diaphragm and the throat

�PI2;Pae�. The ratios of the pressure oscillations to the mean values are small

�Phe; 0�2%; Pae; 0�6%;PI1; 0�16%; PI2; 0�4%�. However, the thrust oscillations are relatively more

signi®cant (2�5%), showing that the accumulation of organized oscillations has a great effect on the

integrated forces. Hence the thrust is more perturbed by the aeroacoustic interaction than is the

pressure.

The spectra exhibit many peaks, as can be observed in Figure 5. Frequencies detected by

experiments are predicted. The axial evolution of the spectra provides information on the non-linear

vortex interaction. Near the shear layer origin at the ®rst position (Figure 5a) a dominant peak is

observed at 1800 Hz. This frequency corresponds to the sixth acoustic mode of the chamber. With the

help of the time evolution of the iso-vorticity (Figure 3) it has been observed that this frequency

Figure 3. Iso-vorticity contours
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corresponds also to the initial roll-up process. Thus the vortex shedding is driven by the sixth acoustic

mode of the chamber. The selection mechanism of the vortex-shedding frequency is related to the

shear at the origin of the mixing layer near the second diaphragm. The intensity of this initial shear

de®nes the selected frequency corresponding to the critical mixing layer one. In fact, when the

viscosity is equal to 400mlam, the vortex-shedding frequency corresponds to the third mode (900 Hz)4

and in this case no separation has been detected. In the present case, owing to the existence of

separation, the initial shear is different and consequently the natural vortex-shedding frequency is

different. Peaks at the fourth and ninth modes of the chamber (1200 and 2700 Hz) and at the ®rst

acoustic mode of the head-end cavity (2300 Hz) are also present in the spectrum. At the second

position (Figure 5b) the dominant peak corresponds to 900 Hz. Hence at this position the pairing of

Figure 4. Time history of thrust: a, complete history; b, `zoom-in' ensemble

Table IV. Mean values and amplitudes (SI units)

_me Th Phe Pae PI1 PI2

Mean 7.191 15280 4305044 4221451 4304996 4290768
Amplitude 0.03 380 9085 26916 6813 15200
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two vortices emitted at 1800 Hz occurs. Peaks at 750, 1200 and 1800 Hz are also present in this

spectrum. The peak at 750 Hz corresponds to the ®rst acoustic mode of the cavity between the second

diaphragm and the throat. The peak at 600 Hz, corresponding to the pairing of three vortices emitted

at 1800 Hz, is detected at the third position (Figure 5c). The peak at 1200 Hz is also important in this

position. At the last position (Figure 5d) the spectrum exhibits the following peaks with decreasing

intensities: 1200, 600, 1800, 900, 750, 1500, 1200 and 450 Hz. Thus the axial evolution of the shear

layer is dominated by the pairing of vortices linked to the acoustic modes of the chamber. Moving

downstream, peaks corresponding to the pairing of two (900 Hz), three (600 Hz) and four (450 Hz)

vortices emitted at 1800 Hz occurs. In fact, the pairing of vortices is directly related to the

development of subharmonics.11,12 The pairing mechanism constitutes one of the most striking

features in the mixing layer dynamics12,13 as it is related to the complex non-linear self-coupling of

vorticity modes under acoustic control. It can be noticed that all frequencies detected are not

necessarily related to vortices. Acoustic wave frequencies of the subcavities are detected that do not

control the vortex mechanism. Frequencies arising from non-linear hydrodynamic interaction12 can

also be observed (1200 Hz� 18007 600 Hz, 2700 Hz� 1800� 900 Hz).

4. CONCLUSIONS

The present study consists of the analysis of the aeroacoustics in a solid propellant rocket motor. The

interaction between the hydrodynamic instability and the acoustics has been described. Vortex

Figure 5. Spectra of V-component in mixing layer: a, x=L � 0�575; r=L � 0�025; b, x=L � 0�63; r=L � 0�025;
c, x=L � 0�745; r=L � 0�025; d, x=L � 0�86; r=L � 0�026
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shedding and pairing result from this strong interaction. The vortex-shedding frequency corresponds

to the sixth chamber acoustic mode (1800 Hz). Subharmonics exhibited by the spectra are related to

the pairing (900 and 600 Hz) or to the non-linear hydrodynamic interaction (1200 Hz). Acoustic

modes of the aft-end (750 and 1500 Hz) and head-end (2300 Hz) cavities are also detected. Thus the

vortex shedding is controlled by the acoustics of the chamber excited by vortical structures in the

shear layer. We also pointed out that the thrust is more affected by the oscillation than is the pressure.
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